miR‐373 regulates inflammatory cytokine‐mediated chondrocyte proliferation in osteoarthritis by targeting the P2X7 receptor
نویسندگان
چکیده
Inflammatory cytokines commonly initiate extreme changes in the synovium and cartilage microenvironment of osteoarthritis (OA) patients, which subsequently cause cellular dysfunction, especially in chondrocytes. It has been reported that induction of the purinergic P2X7 receptor (P2X7R) can regulate the expression of a variety of inflammatory factors, including interleukin (IL)-6 and -8, leading to OA pathogenesis. However, knowledge of the mechanism of upregulation of P2X7R in OA is still incomplete, and its role in chondrocyte proliferation is also not clear. It was reported previously that the expression of P2X7R was controlled by certain microRNAs, and so we tested the expression of several microRNAs and found that microRNA-373 (miR-373) was downregulated in the chondrocytes from OA patients. Regarding the mechanism of action, miR-373 inhibited chondrocyte proliferation by suppressing the expression of P2X7R, as well as inflammatory factors such as IL-6 and IL-8. Furthermore, the proliferative and pro-inflammatory effects of miR-373 on the chondrocytes could be suppressed by a P2X7R antagonist, further suggesting that miR-373 mediates chondrocyte proliferation and inflammation by targeting P2X7R. Generally, our results suggest a novel method for OA treatment by targeting the miR-373-P2X7R pathway.
منابع مشابه
Adipose-Derived Stem Cells Suppress Inflammation Induced by IL-1β through Down-Regulation of P2X7R Mediated by miR-373 in Chondrocytes of Osteoarthritis
Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated i...
متن کاملA novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis
The main etiopathogenesis of rheumatoid arthritis (RA) is overexpressed inflammatory cytokines and tissue injury mediated by persistent NF-κB activation. MicroRNAs widely participate in the regulation of target gene expression and play important roles in various diseases. Here, we explored the mechanisms of microRNAs in RA. We found that microRNA (miR)-10a was downregulated in the fibroblast-li...
متن کاملDownregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملMiR-125b inhibits stromal cell proliferation in giant cell tumor of bone by targeting parathyroid hormone 1 receptor
Objective(s):miR-125b has been identified as a tumor suppressor in many tumors, but its role in giant cell tumor (GCT) of bone remains poorly understood. The current study aimed to investigate the potential role and mechanism of miR-125b in GCT. Materials and Methods:Expression levels of miR-125b in GCT tissues were determined using RT-PCR. The cell proliferation was surveyed by direct cell coun...
متن کاملmiR-150 Promotes Human Breast Cancer Growth and Malignant Behavior by Targeting the Pro-Apoptotic Purinergic P2X7 Receptor
The P2X7 receptor regulates cell growth through mediation of apoptosis. Low level expression of P2X7 has been linked to cancer development because tumor cells harboring a defective P2X7 mechanism can escape P2X7 pro-apoptotic control. microRNAs (miRNAs) function as negative regulators of post-transcriptional gene expression, playing major roles in cellular differentiation, proliferation, and me...
متن کامل